

Table of contents

Chapter contents

- 1 The Machine
- 2 How much Power one Machine can produce
- 3 How many Machines per Park
- 4 Calculation Summery
- 5 Reimbursement Calculation
- 6 Ownership declaration
- 7 Which sort of Transformer
- 8
- 9 First Time Plan for the Project
- 10 Which sort of Contractors / Workers are needed
- 11 Land map of the first selection of Park position
- 12 Standardized Power Purchase Agreement
- 13 Step by Step the Authorities
- 14 Construction of the Transformer house and the DC/AC holders
- 15 The Microcomputer in the Machine
- 16 The Software in the Microcomputer
- 17 The driver Unit for the E-Motors
- 18 The Fence around the Plot
- 19 The Fire protection System
- 20 The Factory to produce the Machines
- 21 Addresses and Contact Info of involved Leads / Contractors / Workers

The Machine Front View

The Machine Back View

PV*SOL Expert 4.0 (R9)

Gross/Active PV Surface Area:	471,80 / 475,1	3 m²
PV Array Irradiation: Energy Produced by PV Array (AC): Grid Feed-in:	1.119.515 kW 143.360 kW 143.360 kW	h h h
System Efficiency: Performance Ratio: Specific Annual Yield: CO2 Emissions Avoided:	12,8 % 73,6 % 1.734 kW 126.976 kg,	h/kWp /a

The results are determined by a mathematical model calculation. The actual yields of the photovoltaic system can deviate from these values due to fluctuations in the weather, the efficiency of modules and inverters, and other factors. The System Diagram above does not represent and cannot replace a full technical drawing of the solar system.

How many Machines per Park

Calculation Narok P		
Ground length	303	m
Ground width	275	m
Unit's count	28	Pcs.
Power of one Unit	82,65	kWp
Park max AC Power	2155	kW
Grid feed in AC per Unit	143360	kWh/a
Feed in price per kWh	0,12	US\$/kWh
Cost's to build Park	4232234	EUR
Investors investment time	240	month
Calculation		
Park feed in per year	4014080	kWh/a
Park income per year in US\$	481690	US\$/a
Park income per year in EUR	422535	EUR/a
Park income per month	35211	EUR/month
Pay back to investor - time	240	month
	29804	EUR/month

Reimbursement Ca									
							2,84%		
	Rest Invest	Rest Investment		pay to Investor		Repayment		Reimbursement	
Park building cost's	4232234	EUR			237458	EUR	120195	EUR	
after 1. Year	4114972	EUR	357654	EUR	240788	EUR	116865	EUR	
after 2. Year	3991048	EUR	357654	EUR	244308	EUR	113346	EUR	
after 3. Year	3860086	EUR	357654	EUR	248027	EUR	109626	EUR	
after 4. Year	3721686	EUR	357654	EUR	251958	EUR	105696	EUR	
after 5. Year	3575424	EUR	357654	EUR	256112	EUR	101542	EUR	
after 6. Year	3420854	EUR	357654	EUR	260501	EUR	97152	EUR	
after 7. Year	3257505	EUR	357654	EUR	265140	EUR	92513	EUR	
after 8. Year	3084878	EUR	357654	EUR	270043	EUR	87611	EUR	
after 9. Year	2902445	EUR	357654	EUR	275224	EUR	82429	EUR	
after 10. Year	2709651	EUR	357654	EUR	280700	EUR	76954	EUR	
after 11. Year	2505905	EUR	357654	EUR	286486	EUR	71168	EUR	
after 12. Year	2290587	EUR	357654	EUR	292601	EUR	65053	EUR	
after 13. Year	2063039	EUR	357654	EUR	299063	EUR	58590	EUR	
after 14. Year	1822566	EUR	357654	EUR	305893	EUR	51761	EUR	
after 15. Year	1568434	EUR	357654	EUR	313110	EUR	44544	EUR	
after 16. Year	1299867	EUR	357654	EUR	320737	EUR	36916	EUR	
after 17. Year	1016046	EUR	357654	EUR	328798	EUR	28856	EUR	
after 18. Year	716104	EUR	357654	EUR	337316	EUR	20337	EUR	
after 19. Year	399125	EUR	357654	EUR	346318	EUR	11335	EUR	
after 20. Year	64142	EUR	357654	EUR	355832	EUR	1822	EUR	

Ownership Declaration

If you Invest 100% in this Project you are the owner of the 100% Power what the Project bring out (AC). The Income minus Security minus Service is payed for about 20 year's to you. During this 20 Years you get free Service and driving of the Machines (Park). After the repayment of the given Investment you are out of the Project. The remaining Machines, Cables, Modules and Is the Owner the Company. The Company will use longer and on the end the Company will remove the Material.

Which sort of Transformers

Electrical Connections

- •Highvoltage and Lowvoltage connections are placed left and right on the side of Transformator. (Abb. 1)
- •The lowvoltage connections and the zero voltage point are to find in top of Transformator. (Abb. 2)
- •The Highvoltage connections are mecanical and electrical integrated in the windings for High voltage and together with the contacts for voltage switch. (Abb. 3)

OS Anschluss mit Anzapfungsbuchsen

Leistung	Тур	OS - US	P ₀	P _k 120°C	U _k	L _{wa}	Länge	Breite	Höhe	Ges. Gew.
kVA		kV	w	w	%	dB (A)	mm	mm	mm	kg
2500	DTTHIL	20 - 0,4	3700	16300	6	68	2200	1270	2300	6350

First Time Plan for the Project

Total Sum of working days = 270

90 Days	74 Days	22 Days	21 Days	21 Days	21 Days	21 Days	
Start Allowance of Authorities		FIRST MACINE	8 Machines	15 Machines	22 Machines	28 Machines	End Test
Ground leveling							
Cable digging							
Foundation							
Trafo placement							
DC/AC Converter							

Chapter 9

Chapter 10

Contractors / Workers are needed

Type of Worker	Shift one	Shift two	Sum of Worker
Measurement	2	2	4
Caterpillar Drivers	1	1	2
Truck Drivers	2	2	4
Crane Drivers	2	2	4
Form workers	4	4	8
Concrete Workers	4	4	8
Welders	2	2	4
Electricians	2	2	4
Helpers/Assistants	20	20	40
Mechanics	2	2	4
Logistic Material Workers	2	2	4
Catering - Cooks	2	2	4
Illness loosing	5	5	10
Sum of all	50	50	100

Land map of the first selection of Park position

Land map of the first selection of Park position

Land map of the first selection of Park position

Construction of the Transformer house and the DC/AC holders

The Microcomputer in the Machine

The Hardware is specially build for this System.

On the Circuit you find :

1. RAM for running the Variables in the Program

2. ROM with the BASIC Interpreter

3. EEPROM for storing the Machine adjustment and the non lost able Variables and counter's

4. RS232 serial Interface for Program up/down load and communication with Park Control Unit

5. IO Port's for switch on/off Motors, look to sensors, measurement of Photovoltaic Energy

-6. Watchdog for restart the Microprocessor if the Program is in "stop by a fault"

-7. CPU to organize everything

8. ACCU for giving Energy to RAM short time when main Power is cut /off

9. Real time Clock for giving the Program the actual Date and Time

10. Input for the Signal of World time Signal to syncronize the E-Motor start

-11. A/D Converter 8 Bit 0-4V = 00-FF

The Microcomputer in the Machine Top View

The Microcomputer in the Machine Back View

The Software in the Microcomputer circuit

The Software is written in BASIC Language. The Program is exactly made for the Hardware. The Program is in the undeletable ROM and when the main Power is switched on again, the Program starts automatically. When the Program starts running, it will ask for the geographical position of the Machine, regardless the time and date, because the position will determine the direction and height of the sun.

So the program can calculate which motor and how long it should remain on. On the machine are end sensors to give signal to the CPU when the position in EAST or WEST or in LUNCH time. On the wheels are sensors to give the CPU signal that Motor is running and how far was the way to compensate different Gears or Motors losses.

The Program is communicating with the RS232 Interface and send Information about the actual position and waits for commands from the main control Unit.

The driver Unit for the E-Motors

This Unit takes the Signals from the IO-Ports of the CPU and change it in 400VAC 3 Phase 10Hz to 80 Hz.

The 2 Outputs are build for 2 x 4 kW asyncron E-Motors. The main is that only one Output is switched on, so the Motor's is not running at the same time. The motors will run alternatively. This will reduce the peak for power consumption of the motors.

In the moment the motors are switched off, the generated Energy is going in a bulk Resistor. So the internal voltage will not be too high to damage the main Transistors. The switch point of the Resistor is controlled with a voltage control part inside this circuit.

The vertical turn is driven with 4 x 1 kW asyncron E-Motors. The motors are parallel connected.

The horizontal movement is driven with 2 x 2 kW asyncron E-Motors. The motors are parallel connected.

The Fence is made from chain link fence. It is 1,5 m high. See picture. The distance between of the posts is 3 m.

394 Posts, 79 Holders, 1180 m L-Profile, 1180 m x 1 m Big chain link, 1180 m x 0,5 m Small chain link

The Fire protection System

Ground ring of Machine

Around every Machine are 11 Sprinklers installed. All on one ring pipe. The ring pipe is with two T's connected to the output of a Valve near middle of Machine. The input of a Valve is connected to a Pipe grid between all Machines. On the highest point of an Area is a Water Tank placed with a pump. If fire should occur near one Machine, the Valve for this Machine opens and the Valves of the neighboring Machines will open. So the Ground will get wet and the fire goes off.

Addresses and Contacts Infos for involved Leaders / Contractors / Workers

Main Planer : Wolfram Berger, von-Witzlebenstr. 33, 56076 Koblenz, Germany, +49 178 29 63 015, europasolar@yahoo.de Measurements :

Caterpillar Drivers :

Truck Drivers :

Crane Drivers :

Formwork Builders :

Concrete Workers :

Welders :

Electricians Worker :

Mechanics Worker :

Logistic Material Worker :

Catering Cook : Florence Berger, von-Witzlebenstr. 33, 56076 Koblenz, Germany